

¿Cuáles son las consecuencias para la salud de la contaminación por nitratos?

Cuando el agua contiene concentraciones elevadas de **nitratos (NO₃-)** — provenientes de purines, fertilizantes o lixiviados de residuos orgánicos— estos pueden transformarse en **nitritos (NO₂-)** en el organismo y causar distintos efectos sobre la salud.

Principales riesgos:

- **Metahemoglobinemia o "síndrome del bebé azul"**: los nitritos impiden que la sangre transporte oxígeno con normalidad, afectando sobre todo a lactantes y embarazadas.
- **Trastornos tiroideos**: los nitratos interfieren en la captación de yodo y en la síntesis de hormonas tiroideas.
- **Riesgo cancerígeno**: en el estómago, los nitritos pueden reaccionar con aminas formando **nitrosaminas**, compuestos potencialmente cancerígenos.
- **Efectos crónicos**: exposición prolongada asociada a **hipertensión**, alteraciones metabólicas y **riesgo reproductivo**.

La **Organización Mundial de la Salud (OMS)** fija un valor máximo de **50 mg/L de nitratos** en agua potable. Por encima de ese límite, se considera **no apta para el consumo humano**, especialmente en zonas rurales con alta carga agrícola o ganadera.

Consecuencias de la contaminación por nitratos y su evolución si no se actúa Las enfermedades vinculadas a la exposición prolongada a **nitratos y nitritos** no tienen una "cura" simple: lo esencial es **prevenir** y **reducir la exposición** desde el agua y los alimentos.

Prevención y tratamiento

- La **metahemoglobinemia** puede revertirse si se **retira la fuente de agua contaminada** y se administra **azul de metileno** bajo control médico.
- Los **trastornos tiroideos o metabólicos** se estabilizan solo si se **elimina la exposición continua** a nitratos y se **corrige el déficit de yodo**.
- La **formación de nitrosaminas** y el riesgo cancerígeno **no tienen tratamiento directo**: la única estrategia efectiva es **evitar la acumulación** de nitratos y nitritos en el agua y en la dieta.

Si no se actúa...

El exceso de nitratos se acumula en los acuíferos durante décadas. Si no se reducen las fuentes de contaminación:

- Los pozos rurales y redes municipales se volverán no potables.
- Aumentarán los **problemas respiratorios e intestinales** en población vulnerable.
- La contaminación se volverá crónica e irreversible en muchas masas de agua subterránea.
- Las cuencas agrícolas sufrirán **restricciones de uso** y pérdida de suelo fértil por salinización y desequilibrio químico.

Cómo afecta a la salud la eutrofización de los ríos

La **eutrofización** —proliferación de algas por exceso de nutrientes— no solo daña los ecosistemas: también impacta directamente en la salud humana.

Efectos sanitarios principales:

- **Cianobacterias tóxicas**: algunas liberan **microcistinas** y otras toxinas hepatotóxicas o neurotóxicas.
 - Ingesta: puede provocar **hepatitis química**, **vómitos y diarrea severa**.
 - o Contacto: irritación cutánea y ocular.
 - Inhalación de aerosoles: **problemas respiratorios y fiebre** en personas sensibles.
- Pérdida de oxígeno en el agua: genera descomposición anaerobia y emisión de gases tóxicos como sulfuro de hidrógeno (H₂S) o amoníaco, peligrosos para trabajadores y fauna.
- **Deterioro del agua potable**: las plantas de tratamiento deben usar **más cloro y carbón activo**, lo que genera **subproductos tóxicos** y eleva el riesgo de **cáncer vesical y de hígado** a largo plazo.
- **Restricciones recreativas**: cierre de zonas de baño y pesca por contaminación microbiológica y algal.

Ejemplo reciente: el embalse de La Colada (Córdoba)

En 2023 y 2024 se **prohibió el baño y el consumo de agua** del **embalse de La Colada** por la presencia masiva de **cianobacterias tóxicas** (microcistinas), originadas por **eutrofización** debida al exceso de **nitratos procedentes de vertidos ganaderos y agrícolas**.

El agua presentó niveles que **superaban los límites sanitarios**, provocando:

- **Riesgo para la salud pública**, especialmente niños y personas inmunodeprimidas.
- Cierre de zonas de recreo y pesca, con impacto económico y social.
- **Alerta sanitaria prolongada**, porque las toxinas permanecen en el sedimento y se reactivan con el calor.
- La Colada es el aviso visible de lo que ocurre cuando la contaminación difusa no se controla: la pérdida simultánea de salud, ecosistema y uso social del agua.

Los cuatro planos de la circularidad

1. Circularidad de residuos.

Las plantas de biogás no eliminan el nitrógeno ni el fósforo de los purines: solo los transforman en digestato, que conserva casi el 100 % de los nutrientes originales.

Si no se aplican tecnologías costosas de recuperación (stripping, membranas, etc.), el riesgo de lixiviación persiste e incluso aumenta, porque el digestato es más inestable que el estiércol bruto.

2. Circularidad del carbono.

La digestión convierte el carbono orgánico en metano (CH₄), que al quemarse se transforma en CO₂.

No se recupera carbono en un ciclo agronómico, sino que se transfiere a la atmósfera. Desde una perspectiva climática, es una **circularidad rota**: se captura carbono del pienso y del suelo y se devuelve en forma de emisiones.

3. Circularidad energética.

La energía recuperada es muy inferior a la invertida.

Estudios independientes indican que solo se obtiene en forma de biogás alrededor del 13 % de la energía fósil empleada en criar al ganado (piensos, transporte, electricidad, agua).

En términos de tasa de retorno energético (EROI), estas plantas son **negativas** si se considera el ciclo completo de la ganadería intensiva.

4. Circularidad económica y social.

El modelo se sostiene con **subvenciones públicas** (PAC, fondos Next Generation, primas a la renovable).

Sin ese apoyo, sería inviable. Para la ciudadanía no hay retorno en forma de agua limpia, salud o empleo sostenible: hay más contaminación, pérdida de biodiversidad y conflictos sociales en el medio rural.

¿Qué es una Zona Sensible? (Directiva 91/271/CEE)

Una masa de agua (río, lago, embalse o estuario) se considera zona sensible cuando recibe una carga excesiva de nutrientes (nitrógeno y fósforo) que provoca eutrofización.

Consecuencias:

- Proliferación de algas y plantas acuáticas.
- Pérdida de oxígeno disuelto.
- Muerte de peces y degradación de ecosistemas.
- Riesgos para el agua potable y el baño.

¿Qué está en juego?

La calidad del agua y la salud de los ecosistemas dependen del **equilibrio de nutrientes**.

La eutrofización es un proceso **reversible** solo si se reduce la entrada de nitratos y fósforo desde **todas las fuentes**:

- Vertidos urbanos e industriales.
- Agricultura intensiva y ganadería (purines, estiércoles, digestatos).
- Escorrentía y fugas de balsas o almacenamiento.

¿Qué deben hacer los Estados miembros?

La Directiva obliga a:

- ✓ Identificar y declarar zonas sensibles.
- **☑ Delimitar su cuenca de captación**, es decir, todo el territorio desde el que pueden llegar nutrientes.
- ✓ Aplicar planes de reducción de nutrientes, coordinando vertidos urbanos, industriales y agrarios.
- Asegurar que la carga neta de N y P no aumente (principio de no deterioro).
- ← En la práctica, deben aprobar Planes Hidrológicos de Cuenca y Programas de Medidas que integren estas obligaciones en las autorizaciones y la gestión diaria.

En España: el papel de la Confederación Hidrográfica del Guadiana

La **CHG** ha incorporado las *zonas sensibles y sus cuencas de captación* en el **Plan Hidrológico del Guadiana 2022–2027**, estableciendo:

- Programas para reducir nitrógeno y fósforo.
- Exigencia de **tratamientos terciarios** en EDAR y vertidos industriales.
- Control de **fuentes difusas agrícolas y ganaderas** (nitratos, digestatos).
- Seguimiento mediante red oficial de calidad de aguas.
- **? Sin embargo:** esta planificación **no se aplica automáticamente** a cada proyecto.

Muchos permisos (AAI, vertidos, biogás/SANDACH) **no incluyen aún la comprobación del "balance neto de nutrientes ≤ 0"** ni medidas de compensación en cuenca.

Qué debe pedirse a la administración y al promotor

- Exigir que toda actuación en la cuenca sensible demuestre "carga neta ≤ 0" de N y P.
- Implantar **tratamiento avanzado (terciario)** y control analítico de vertidos y digestatos.
- Incorporar barreras verdes, humedales y retención de nutrientes en origen.
- Establecer **red de control de agua y suelos** conectada con la CHG.
- Añadir cláusula de **"no deterioro"** y revisión de la autorización si se superan los límites.

En resumen:

La **CHG ha planificado el marco** (zonas sensibles, objetivos y medidas), pero **corresponde a la Junta de Extremadura y a cada promotor** demostrar que sus proyectos cumplen la regla de **no empeoramiento** en la cuenca del Guadiana.

Etapa	Nitrógeno (N)	Fósforo (P)	Situación
Ciclo natural antes del intensivo	Fijación biológica por leguminosas y bacterias; retornaba al suelo con estiércol y restos vegetales.	Procedía de la meteorización de rocas y ciclo interno del suelo; retornaba por cenizas, excrementos, descomposición orgánica.	Circularidad casi completa: el balance entraba y salía en equilibrio.
Agricultura tradicional	Uso moderado de estiércoles y rotaciones de cultivo. La capacidad de los suelos absorbía casi todo el N.	Aportes bajos, con suelos capaces de reciclar y retener el fósforo.	Seguía siendo nutriente: los excedentes eran mínimos.
Agricultura/ ganadería intensiva	Fertilizantes sintéticos (Haber- Bosch) + concentración de purines ganaderos. Mucho más N de lo que absorben cultivos y suelos.	Fertilizantes fosfatados extraídos de minas. El suelo se satura y el P lixivia las aguas.	Exceso recurrente → los nutrientes ya no se integran en el ciclo, pasan a ser "sobrantes".
Ecosistemas acuáticos	Nitratos lixiviados a acuíferos → contaminación de agua potable; llegada a ríos/embalses → algas y cianobacterias.	Fosfatos arrastrados a embalses → sedimentación y eutrofización.	Nutrientes convertidos en contaminantes: generan eutrofización y pérdida de biodiversidad.
Situación actual	España: >50% de masas de agua subterráneas con exceso de nitratos.	Embalses (ej. Alqueva, La Colada, etc.) con episodios graves de eutrofización.	Circularidad perdida: ya no fertilizan, sino que destruyen ecosistemas.

FUENTES DE PRESIÓN AMBIENTAL Y RIESGOS DE SALUD POR AGUA Y AIRE

Foco emisor	Principales contaminantes vectores agua	Riesgo sanitario principal	Principales contaminantes vectores aire	Riesgos sanitarios principales
Planta de biogás + transporte y aplicación digestato	Amoníaco (NH ₃) y nitratos en digestato, Aerosoles, endotoxinas, polvo biológico	Fugas y lixiviados a masas de agua	Bioaerosoles (bacterias, hongos, endotoxinas), NH ₃ , H ₂ S, COV	Irritación respiratoria, asma, alergias, infecciones oportunistas
Granjas porcinas intensivas	Antibióticos, genes de resistencia, olores intensos, olores intensos	Neumonías, resistencia antibióticos, crisis asmáticas, molestias crónicas	Antibióticos, genes de resistencia, olores intensos	Difusión de resistencias, crisis asmáticas, malestar crónico
SANDACH (si se autorizan)	Patógenos zoonóticos (Salmonella, Listeria, Clostridium, E. coli), virus entéricos (Hepatitis E), antibióticos, genes de resistencia, nitratos, metales pesados, materia orgánica en descomposición	Contaminación de aguas superficiales y subterráneas, transmisión de enfermedades gastrointestinales o hepáticas, proliferación de resistencia antimicrobiana, eutrofización y toxicidad crónica por nitratos y compuestos residuales	Patógenos zoonóticos (E. coli, Salmonella). Aerosoles, endotoxinas, polvo biológico	Riesgo de zoonosis, contaminación cruzada, Neumonías, exposición ocupacional, molestias comunitarias
Cementera y canteras	Partículas finas (PM ₁₀ , PM ₂₋₅), NOx, metales pesados	Riesgo cardiovascular y respiratorio, cáncer a largo plazo	Partículas finas (PM ₁₀ , PM ₂₋₅), sílice, metales pesados	Sinergia respiratoria con bioaerosoles, cáncer y silicosis